212 research outputs found

    Constructing Hybrid Baryons with Flux Tubes

    Get PDF
    Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.Comment: 4 pages, RevTeX. Submitted to Physical Review Letter

    Special relativity constraints on the effective constituent theory of hybrids

    Get PDF
    We consider a simplified constituent model for relativistic strong-interaction decays of hybrid mesons. The model is constructed using rules of renormalization group procedure for effective particles in light-front quantum field theory, which enables us to introduce low-energy phenomenological parameters. Boost covariance is kinematical and special relativity constraints are reduced to the requirements of rotational symmetry. For a hybrid meson decaying into two mesons through dissociation of a constituent gluon into a quark-anti-quark pair, the simplified constituent model leads to a rotationally symmetric decay amplitude if the hybrid meson state is made of a constituent gluon and a quark-anti-quark pair of size several times smaller than the distance between the gluon and the pair, as if the pair originated from one gluon in a gluonium state in the same effective theory.Comment: 11 pages, 5 figure

    A schematic model for QCD I: Low energy meson states

    Full text link
    A simple model for QCD is presented, which is able to reproduce the meson spectrum at low energy. The model is a Lipkin type model for quarks coupled to gluons. The basic building blocks are pairs of quark-antiquarks coupled to a definite flavor and spin. These pairs are coupled to pairs of gluons with spin zero. The multiplicity problem, which dictates that a given experimental state can be described in various manners, is removed when a particle-mixing interaction is turned on. In this first paper of a series we concentrates on the discussion of meson states at low energy, the so-called zero temperature limit of the theory. The treatment of baryonic states is indicated, also.Comment: 29 pages, 6 figures. submitted to Phys. Rev.

    DsJ(2860)D_{sJ}(2860) and DsJ(2715)D_{sJ}(2715)

    Full text link
    Recently Babar Collaboration reported a new csˉc\bar{s} state DsJ(2860)D_{sJ}(2860) and Belle Collaboration observed DsJ(2715)D_{sJ}(2715). We investigate the strong decays of the excited csˉc\bar{s} states using the 3P0^{3}P_{0} model. After comparing the theoretical decay widths and decay patterns with the available experimental data, we tend to conclude: (1) DsJ(2715)D_{sJ}(2715) is probably the 1(13D1)1^{-}(1^{3}D_{1}) csˉc\bar{s} state although the 1(23S1)1^{-}(2^{3}S_{1}) assignment is not completely excluded; (2) DsJ(2860)D_{sJ}(2860) seems unlikely to be the 1(23S1)1^{-}(2^{3}S_{1}) and 1(13D1)1^{-}(1^{3}D_{1}) candidate; (3) DsJ(2860)D_{sJ}(2860) as either a 0+(23P0)0^{+}(2^{3}P_{0}) or 3(13D3)3^{-}(1^{3}D_{3}) csˉc\bar{s} state is consistent with the experimental data; (4) experimental search of DsJ(2860)D_{sJ}(2860) in the channels DsηD_s\eta, DKDK^{*}, DKD^{*}K and DsηD_{s}^{*}\eta will be crucial to distinguish the above two possibilities.Comment: 18 pages, 7 figures, 2 tables. Some discussions added. The final version to appear at EPJ

    Euclidean Approach to the Entropy for a Scalar Field in Rindler-like Space-Times

    Get PDF
    The off-shell entropy for a massless scalar field in a D-dimensional Rindler-like space-time is investigated within the conical Euclidean approach in the manifold C_\be\times\M^N, C_\be being the 2-dimensional cone, making use of the zeta-function regularisation. Due to the presence of conical singularities, it is shown that the relation between the zeta-function and the heat kernel is non trivial and, as first pointed out by Cheeger, requires a separation between small and large eigenvalues of the Laplace operator. As a consequence, in the massless case, the (naive) non existence of the Mellin transform is by-passed by the Cheeger's analytical continuation of the zeta-function on manifold with conical singularities. Furthermore, the continuous spectrum leads to the introduction of smeared traces. In general, it is pointed out that the presence of the divergences may depend on the smearing function and they arise in removing the smearing cutoff. With a simple choice of the smearing function, horizon divergences in the thermodynamical quantities are recovered and these are similar to the divergences found by means of off-shell methods like the brick wall model, the optical conformal transformation techniques or the canonical path integral method.Comment: 17 pages, LaTex. A sign error corrected and few comments adde

    Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method

    Get PDF
    The newly developed nonadiabatic method based on the coupled-channel Schroedinger equation with Gamow states is used to study the phenomenon of proton radioactivity. The new method, adopting the weak coupling regime of the particle-plus-rotor model, allows for the inclusion of excitations in the daughter nucleus. This can lead to rather different predictions for lifetimes and branching ratios as compared to the standard adiabatic approximation corresponding to the strong coupling scheme. Calculations are performed for several experimentally seen, non-spherical nuclei beyond the proton dripline. By comparing theory and experiment, we are able to characterize the angular momentum content of the observed narrow resonance.Comment: 12 pages including 10 figure

    Strong Decays of Strange Quarkonia

    Get PDF
    In this paper we evaluate strong decay amplitudes and partial widths of strange mesons (strangeonia and kaonia) in the 3P0 decay model. We give numerical results for all energetically allowed open-flavor two-body decay modes of all nsbar and ssbar strange mesons in the 1S, 2S, 3S, 1P, 2P, 1D and 1F multiplets, comprising strong decays of a total of 43 resonances into 525 two-body modes, with 891 numerically evaluated amplitudes. This set of resonances includes all strange qqbar states with allowed strong decays expected in the quark model up to ca. 2.2 GeV. We use standard nonrelativistic quark model SHO wavefunctions to evaluate these amplitudes, and quote numerical results for all amplitudes present in each decay mode. We also discuss the status of the associated experimental candidates, and note which states and decay modes would be especially interesting for future experimental study at hadronic, e+e- and photoproduction facilities. These results should also be useful in distinguishing conventional quark model mesons from exotica such as glueballs and hybrids through their strong decays.Comment: 69 pages, 5 figures, 39 table

    Local mean-field study of capillary condensation in silica aerogels

    Full text link
    We apply local mean-field (i.e. density functional) theory to a lattice model of a fluid in contact with a dilute, disordered gel network. The gel structure is described by a diffusion-limited cluster aggregation model. We focus on the influence of porosity on both the hysteretic and the equilibrium behavior of the fluid as one varies the chemical potential at low temperature. We show that the shape of the hysteresis loop changes from smooth to rectangular as the porosity increases and that this change is associated to disorder-induced out-of-equilibrium phase transitions that differ on adsorption and on desorption. Our results provide insight in the behavior of 4^4He in silica aerogels.Comment: 19 figure

    Spin Correlations in e+ee^{+}e^{-} Pair Creation by Two-Photons and Entanglement in QED

    Full text link
    Spin correlations of e+ee^{+}e^{-} pair productions of two colliding photons are investigated and explicit expressions for their corresponding probabilities are derived and found to be \textit{energy} (speed) dependent, for initially \textit{linearly} and \textit{circularly polarized} photons, different from those obtained by simply combining the spins of the relevant particles, for initially \textit{polarized} photons. These expressions also depend on the angles of spin of e+e^{+} (and/or of ee^{-}), for initially {\it linearly polarized} photons, but not for {\it circularly polarized} photons, as a function of the energy. It is remarkable that these explicit results obtained from quantum field theory show a clear violation of Bell's inequality of Local Hidden Variables theories at all {\it energies} beyond that of the threshold one for particle production, in support of quantum field theory in the relativistic regime. We hope that our explicit expression will lead to experiments, of the type described in the bulk of this paper, which can monitor energy (and speed) in polarization correlation experiments.Comment: 12 pages, 4 figure
    corecore